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Statistical-mechanical study of the pair correlations for the dipolar Gay-Berne model
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A statistical-mechanical theory based upon the method of conditional distribution function has been applied
to calculations of the nearest-neighbor~NN! and next NN correlators as well as order parameters. The method
takes into account translational and orientational correlations as well as their coupling. Using the dipolar
Gay-Berne interaction potential, calculations have been carried out for temperatures and densities correspond-
ing to a nematic phase. The results in orientational distribution functions indicate a significant effect of the
dipole-dipole interactions on the orientational order of the liquid crystal. It was found that NN particles tend to
be mutually antiparallel, whereas a reversed tendency is observed for next NN particles. These results are in
agreement with computer simulations and with interpretations of experimental data.@S1063-651X~99!50508-4#

PACS number~s!: 61.30.Cz, 64.70.Md
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The problem of predicting phase behavior of liquid cry
tals ~LCs! based on information about molecular shape a
intermolecular interactions remains one of the most fun
mental in LC physics. In recent years, the Gay-Berne~GB!
@1# model has been frequently used for describing inter
tions between anisotropic particles. In particular, this pot
tial was employed in many computer simulations of liqu
crystalline phases. Frequently, molecules that form the
system possess strongly polar groups. Satoh, Mita,
Kondo @2# have examined the dipole effect on phase equi
ria using GB model and found that theI -N transition is
shifted towards higher temperatures when the dipole mom
is located near the end of the molecule. Vanakaras and P
tinos showed, in the framework of the variational clus
expansion@3#, that the dipole interactions substantially sh
the I -N transition temperature and strongly promote antip
allel molecular association. Rull and coworkers@4# found
that the dipolar model predicts onlyI 2Sm-B transition,
whereas in the absence of dipolar interactions the model
hibits I -N2Sm-B phases at the same temperature. Zann
and coworkers@5# showed using a Monte Carlo~MC! simu-
lation that dipolar GB system with an axial dipole at t
center or near the end of molecules can form antiferroelec
bilayer stripe domains. Furthermore, ferroelectric and a
ferroelectric smectic phases were observed in a MC sim
tion of a polar GB system@6#.

Recently, a modification of Bethe theory@7,8#, which
takes account of intercell pair correlations, has been p
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posed for describing LC systems composed of dipolar
particles@9#. Using this approach, the influence of the dipo
forces on the order parameters~OPs! and the elastic proper
ties of the system have been investigated. The aim of
present Rapid Communication is to apply the above m
tioned approach to investigate the influence of these for
on short-range correlations between molecules in a nem
phase.

We consider here a classical one-component fluid, c
sisting of cylindrically symmetric particles. Letqi denote
their center-of-mass coordinates, and letei denote unit vec-
tors defining their orientations; in the following the colle
tive symbol i[(qi ,ei) will also be used. Particles can b
identified, to a certain approximation, with prolate ellipsoi
of revolution @1#, with major semiaxess i and minor semi-
axess' , respectively. We considerN such particles occu-
pying a volumeV at the temperatureT; ideally one can sub-
divide the total volume intoN cells, each with volumev
5V/N, arranged in a simple-cubic lattice. The treatme
used here further assumes that each cell is occupied by
one molecule; this seems to be a reasonable approxima
for a condensed system. Particles are assumed to interac
a pairwise additive potentialF( i j ), so that the total interac
tion energy for theN particles isU5( i , jF( i j ). The quan-
tity exp@2U/(kBT)# is the canonical probability density; upo
integrating out the coordinates of remaining particles, o
can define single-particle probability densitiesFi( i ), two-
particle probability densitiesFi j ( i j ), and so on@7–9#. The
infinite hierarchy is truncated here at two-particle level. B
the partitioning of space mentioned above,Fi( i ) is the prob-
ability density for a single particle confined inside a cell
volume v, andFi j ( i j ) is a probability density for two par-
ticles confined in two different cells. These functions c
also be written in terms of mean-force potentials~MFPs!
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c i , j ( i ). Following the approach outlined in Refs.@7,8#, one
obtains a closed system of nonlinear integral equations
volving MFP’s @7–9#,

c i , j~ i !5E
j
d~ j !exp@2F~ i j !/~kBT!#c j ,i

21~ j !F j~ j !, ~1!

where

F j~ j !5
c j~ j !

E
j
d~ j !c j~ j !

,

c j~ j !5)
iÞ j

c j ,i~ j !,E
j
d~ j !5E

w
dqjdej ,

w5v ^ a.

Herea denotes the volume associated with orientations.
It should be pointed out that Eq.~1! is valid for various

liquid crystalline phases, which are characterized by tran
tional and orientational correlations as well as their coupli
The solutions,c i , j ( i ), are functions of position and orienta
tion of the particle. Since we take into account only singl
and two-particle functions of the infinite hierarchy, i.e., p
correlations between cells, the following expression for
nary function is obtained:

Fi j ~ i j !5Fi~ i !F j~ j !exp@2F~ i j !/~kBT!#c i , j~ i !21c j ,i~ j !21.
~2!

The last three factors in Eq.~2! reflect correlations betwee
cells, which distinguishes the approach used here fr
mean-field approximations. After solving Eq.~1!, a number
of correlators relevant for a liquid crystalline system, a
expressed in terms of one- and two-particle functions, can
calculated,

P̄2L5^P2L~cosb!&5E
i
d~ i !Fi~ i !P2L~cosb!, ~3!

k̄5 K P2~cosb!cos
2pz

d L 5E
i
d~ i !Fi~ i !P2~cosb!cos

2pz

d
,

~4!

^ei•ej&5E
i
d~ i !E

j
d~ j !Fi j ~ i j !ei•ej . ~5!

Here P2L denote Legendre polynomials of even rank a
P̄2L are the corresponding order parameters. The polar a
b specifies the relative orientation of the long axis of t
molecule and the director, the latter taken to coincide w
the cell z axis, andd is the layer spacing of the smectic-A

phase. The set of OPsP̄2L defines the orientational orde
while k̄ is a measure of the amplitude of the density wa
describing the layered structure. The nematic phase is c
acterized byk̄50 andP̄2LÞ0 @10#.

Solving five-dimensional problem~1! is very compli-
cated, and there are no good general methods for system
n-

a-
.

-

-

m

e

le

h

e
ar-

of

more than one nonlinear equation. The solutionc i , j ( i ) is
invariably obtained by a numerical iterative procedure, us
the formula

c [k11]~Qi !5$c [k]~Qi !L̂c [k]~Qi !%
1/2, ~6!

where L̂, i L̂i<1 is the five-dimensional nonlinear integr
operator defined by Eq.~1! in the spacewi5v ^ a, Qi is a
five-dimensional vector in the same space, andk is the itera-
tion number. The numerical procedure for construction of
MFP c j ( j ) has been described in Refs.@8,9#. It can be re-
peated for various neighbors of thei th cell; in order to keep
the treatment numerically tractable, we took the drastic s
of truncating the interaction potential at second neighbor

Two points should be noted: first, in the present calcu
tion we considered only a simple cubic structure, with s
neighbors and twelve next neighbors; this implies that
deal with a system of 18 nonlinear equations in a fiv
dimensional space.

We are aware of the fact that the correlations are str
beyond the next-nearest neighbors~NNN!, the computations
become, however very heavy and suffer, in addition, fro
numerical instabilities. The second point concerns conv
gence of the iterative procedure; the algorithm Eq.~6! exhib-
ited a poor convergence in the vicinity ofN2Sm-A phase
transition points, because the functionc i , j ( i ) was not a
smoothly varying one. Taken these points into account,
restrict the present Rapid Communication to investigatio
of the nematic phase.

The kernel of the integral equations~1! is determined by
the pair interaction potential; this was chosen to be the s
of a Gay-Berne and dipole-dipole interactions

F~ i j !5FGB~ i j !1Fdd~ i j !.

The GB term has the form@1#

FGB~ i j !54e0eS H s0

qi j 2s1s0
J 12

2H s0

qi j 2s1s0
J 6D ,

~7!

and the dipolar term is defined by

Fdd~ i j !5
D2

qi j
3 $ei•ej23~r i j •ei !~r i j •ej !%, ~8!

where

qi j 5qi2qj , qi j 5uqi j u, r i j 5qi j /qi j .

Here,ei , ej are unit vectors defining molecular orientation
whereasr i j denotes the intermolecular unit vector. The qua
tities s5s(r i j ,ei ,ej ) ande5e(r i j ,ei ,ej ) depend on mutua
orientations but not on distance between centers of mass
their expressions can be found in Ref.@1#. In our calcula-
tions, the parametersm andn of Ref. @1# have been fixed to
the values 1 and 2, respectively.

It should be pointed out that the comparison with the no
polar GB model has been done at the original parametr
tion of the GB potential@1#, with n51 andm52. As for the
dipolar interaction, we are considering axial dipoles plac
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in molecular centers; the symbolD denotes their common
absolute magnitude, andm* 5D/Ae0s0

3.
Our calculations have been performed at temperatures

densities corresponding to the nematic phase. Dimension
~reduced! units have been used for number densityr
5Ns0

3/V, temperatureu5kBT/e0, and dipole momentm* ;
for the anisotropy parameter in the GB potential term,
chose the ratios i /s'53. We examined the effect of differ
ent truncation radii; for example, whenr50.33, u51, and
m* 52, we found a change inP̄2 from 0.9695 ~nearest
neighbors! to 0.9806~nearest and next-nearest neighbor!.
Results quoted in the following were obtained by taking in
account first and second neighbors.

Figure 1 shows the temperature dependence of order
rameterP̄2 for both nonpolar (m* 50) and polar (m* 52)
GB models, at fixed densityr50.33. The results of our cal
culations show a rather good agreement with computer si
lation results, both for polar@2#, and nonpolar@11# GB mod-
els.

For all temperatures, values of the first-rank orientatio
order parameter were found to beP̄1'0.02, suggesting no
ferroelectricity, in agreement with the purely dipolar mod
composed of a simple cubic lattice@12#. Values of the cou-
pling OP, at the same temperatures, were found to bk̄
'0.01, confirming the nematic character of the phase.

The orientational order of LCs is traditionally quantifie
in terms of OPs; however, the most complete description
the order is provided by the singlet orientational distributi

FIG. 1. Temperature dependence of orientational order par

eterP̄2 for both polar and nonpolar GB models, at constant den
r50.33. Open and closed symbols refer to polar and nonpolar
tems, respectively. Our computations are shown using circles,
open triangles represent results from MC simulations@2#, while
closed triangles correspond to MD@11# simulations.
nd
ss

e
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u-
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f

function ~ODF!. In Fig. 2 we compare the ODFsf 0(cosb)
5*dqidwFi(qi ,ei), for both polar and nonpolar models, wit
one determined in the molecular dynamics~MD! simulation
for 5CB ~4-n-pentyl-4’-cyanobiphenyl! @13#. The MD simu-
lation was carried out using the conventional potential
ergy function composed of intra and intermolecular con
butions@14#. The comparison of the ODFs determined usi
the two methods seems justified since the experimental v
of the dipole moment for 5CB molecule is 4.77D @15#,
corresponding tom* 52. Furthermore, the temperature an
density in the MD simulation~300 K and 1 g cm23) corre-
sponds to the dimensionless parametersu51.0 andr50.33,
respectively. Comparing the values of the OPP̄2 obtained
from the MD simulation with realistic atom-atom interactio
~i!, with one obtained from the integral equation~ii ! and MC
~iii ! approaches, both for the dipolar GB model, show
following results: ~i! P̄250.66, ~ii ! P̄250.98, and~iii ! P̄2
50.98, respectively. In view of completely different intera
tion models used in~i! and ~ii,iii ! such a deviation is no
surprising.

Figure 3 displays the temperature dependence of the
erage correlators for nearest and next nearest neighbors
average correlators for nearest-neighbors are defined bjl

5@1/(2l)#( l^e0•el&, where l51 denotes the average o
two ‘‘vertical’’ nearest neighbors of the central particle ind
cated by subscript 0, whereas labell52 correspond to the
average of four ‘‘horizontal’’ neighbors. The ‘‘vertical’’ cor-
relators are characterized by a common positive value, w
almost identical negative values were obtained for all fo

-

y
s-
he

FIG. 2. Orientational distribution functions at fixed density,r
50.33, and temperatureu51.0, for polar and nonpolar GB models
dashed line form* 52, dashed-dotted line form* 50, respectively.
The solid line corresponds to the MD simulation of 5CB in t
nematic phase, atT5300 K and density 1 g cm23.
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‘‘horizontal’’ correlators. The average nearest neighbor c
relator j̄5(1/3)(lljl shown in Fig.~3!, is therefore nega-
tive for all temperatures indicating an antiparallel orientat
of the dipoles in neighbor cells.

We note that the agreement between integral equation
proach~ii ! and the computer simulation~iii !, concerning the
orientational order parameter is good. This leads us to
conclusion the anisotropy of the nematic phase is not

FIG. 3. Temperature dependence of the orientational correla
jl , for the nearest neighbors; circles correspond to the ‘‘vertic
j1, whereas triangles correspond to the ‘‘horizontal’’j2, respec-
tively. The same dependence of the average orientational cor

tors j̄ ~squares! and h̄ ~rhombus!, for the nearest and next neare
neighbors, respectively.
-

p-

e
-

posed by the symmetry of the system~cubic lattice!, but
rather is a consequence of the~GB! potential. In analogy
with nearest neighbors, the correlations between next-nea
neighbors are definedhl5^e0•el&, wherel51, . . . ,12 la-
bels the neighbors of the central particle. We have fou
these quantities to be rather insensitive tol, and therefore
report in Fig. 3 the temperature dependence of their aver
over the twelve neighbors, i.e.,h̄5(1/12)(lhl . The aver-
age correlatorh̄, is positive for all temperatures.

It should be noted out that the MC simulation~iii ! @2#
predicts a smectic structure belowu51.6, while our calcu-
lations indicate a nematic phase. Such disagreement requ
more careful investigation of the phase diagram of the mo
fied GB potentials. In the original formulation of the steng
parametere5e(r i j ,ei ,ej ), with exponentsn51 and m52
@1#, the computer simulation predicts a nematic phase@16#,
in the temperature range that corresponds to our calculati
We also do not knowa priori what effect the changes of th
exponents will have on the stability of the liquid crystallin
phases.

We conclude this Rapid Communication by noting tha
dipole moment attached to a GB particle significantly
creases the orientational order of the system. Furtherm
the average correlators for neighbors and next neighbors
negative and positive, respectively. The former result in
cate an antiparallel average orientation of the neighbor m
ecules. This observation is in fact in agreement with M
computer simulations@2,17#, and with interpretations of ex
perimental data for polar nematogens@18#. Of course, the
head-tail symmetry in the conventional GB particles preve
investigation of this important structural effect. Finally,
should also be pointed out that the absence of long-ra
translational order in the nematic fluid precludes the po
bility of antiferroelectric long-range order.
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